Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Anal Chim Acta ; 1189: 338907, 2022 Jan 02.
Article in English | MEDLINE | ID: covidwho-1336175

ABSTRACT

The immunosensor has been proven a versatile tool to detect various analytes, such as food contaminants, pathogenic bacteria, antibiotics and biomarkers related to cancer. To fabricate robust and reproducible immunosensors with high sensitivity, the covalent immobilization of immunoglobulins (IgGs) in a site-specific manner contributes to better performance. Instead of the random IgG orientations result from the direct yet non-selective immobilization techniques, this review for the first time introduces the advances of stepwise yet site-selective conjugation strategies to give better biosensing efficiency. Noncovalently adsorbing IgGs is the first but decisive step to interact specifically with the Fc fragment, then following covalent conjugate can fix this uniform and antigens-favorable orientation irreversibly. In this review, we first categorized this stepwise strategy into two parts based on the different noncovalent interactions, namely adhesive layer-mediated interaction onto homofunctional support and layer-free interaction onto heterofunctional support (which displays several different functionalities on its surface that are capable to interact with IgGs). Further, the influence of ligands characteristics (synthesis strategies, spacer requirements and matrices selection) on the heterofunctional support has also been discussed. Finally, conclusions and future perspectives for the real-world application of stepwise covalent conjugation are discussed. This review provides more insights into the fabrication of high-efficiency immunosensor, and special attention has been devoted to the well-orientation of full-length IgGs onto the sensing platform.


Subject(s)
Antibodies, Immobilized , Biosensing Techniques , Antibodies , Immunoassay , Immunoglobulin Fc Fragments
2.
Biosens Bioelectron ; 171: 112685, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-891295

ABSTRACT

The spread of SARS-CoV-2 virus in the ongoing global pandemic has led to infections of millions of people and losses of many lives. The rapid, accurate and convenient SARS-CoV-2 virus detection is crucial for controlling and stopping the pandemic. Diagnosis of patients in the early stage infection are so far limited to viral nucleic acid or antigen detection in human nasopharyngeal swab or saliva samples. Here we developed a method for rapid and direct optical measurement of SARS-CoV-2 virus particles in one step nearly without any sample preparation using a spike protein specific nanoplasmonic resonance sensor. As low as 370 vp/mL were detected in one step within 15 min and the virus concentration can be quantified linearly in the range of 0 to 107 vp/mL. Measurements shown on both generic microplate reader and a handheld smartphone connected device suggest that our low-cost and rapid detection method may be adopted quickly under both regular clinical environment and resource-limited settings.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques/instrumentation , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Virion/isolation & purification , Antibodies, Immobilized/chemistry , Biosensing Techniques/economics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/economics , Coronavirus Infections/economics , Equipment Design , Humans , Limit of Detection , Models, Molecular , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL